Optimizing Global-Local Search Hybrids
نویسندگان
چکیده
This paper develops a framework for optimizing global-local hybrids of search or optimization procedures. The paper starts by idealizing the search problem as a search by a global algorithm G for either (1) acceptable targets|solutions that meet a speci ed criterion|or for (2) basins of attraction that then lead to acceptable targets under a speci ed local search algorithm L. The paper continues by abstracting two sets of parameters|probabilities of successfully hitting targets and basins and time-to-criterion coe cients|and writing equations to account for the total time of search and for the reliability in reaching an acceptable solution. A two-basin optimality criterion is derived and applied to important representative problems. Continuations and extensions of the work are suggested, but the theory appears to be useful immediately in better understanding the economy of e ective hybridization.
منابع مشابه
A new memetic algorithm for mitigating tandem automated guided vehicle system partitioning problem
Automated Guided Vehicle System (AGVS) provides the flexibility and automation demanded by Flexible Manufacturing System (FMS). However, with the growing concern on responsible management of resource use, it is crucial to manage these vehicles in an efficient way in order reduces travel time and controls conflicts and congestions. This paper presents the development process of a new Memetic Alg...
متن کاملAugmented Downhill Simplex a Modified Heuristic Optimization Method
Augmented Downhill Simplex Method (ADSM) is introduced here, that is a heuristic combination of Downhill Simplex Method (DSM) with Random Search algorithm. In fact, DSM is an interpretable nonlinear local optimization method. However, it is a local exploitation algorithm; so, it can be trapped in a local minimum. In contrast, random search is a global exploration, but less efficient. Here, rand...
متن کاملA Hybrid Algorithm using Firefly, Genetic, and Local Search Algorithms
In this paper, a hybrid multi-objective algorithm consisting of features of genetic and firefly algorithms is presented. The algorithm starts with a set of fireflies (particles) that are randomly distributed in the solution space; these particles converge to the optimal solution of the problem during the evolutionary stages. Then, a local search plan is presented and implemented for searching s...
متن کاملOPTIMIZATION OF SKELETAL STRUCTURES USING IMPROVED GENETIC ALGORITHM BASED ON PROPOSED SAMPLING SEARCH SPACE IDEA
In this article, by Partitioning of designing space, optimization speed is tried to be increased by GA. To this end, designing space search is done in two steps which are global search and local search. To achieve this goal, according to meshing in FEM, firstly, the list of sections is divided to specific subsets. Then, intermediate member of each subset, as representative of subset, is defined...
متن کاملSolving Flexible Job Shop Scheduling with Multi Objective Approach
In this paper flexible job-shop scheduling problem (FJSP) is studied in the case of optimizing different contradictory objectives consisting of: (1) minimizing makespan, (2) minimizing total workload, and (3) minimizing workload of the most loaded machine. As the problem belongs to the class of NP-Hard problems, a new hybrid genetic algorithm is proposed to obtain a large set of Pareto-optima...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999